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We study the growth shapes of localized turbulent patches (turbulent spots) in a class of partial
differential equations (PDE’s) in two spatial dimensions, of first order in time and in one scalar field
u. The PDE’s are chosen such that the “laminar” state u = 0 is unstable, at least convectively
(i.e, in a moving frame). We show which symmetry breaking terms are required to generate the
characteristic nonconvex growth shapes found in turbulent spots in boundary layers, and how the
shapes transform when we vary the coefficients of these terms. Finally, we show how it is possible, in
certain cases, to find exact solutions for the nonlinear growth shapes and how to measure Lyapunov

exponents of growing turbulent spots.
PACS number(s): 47.27.—i, 47.52.+j

INTRODUCTION

It is a remarkable fact that the transition to turbu-
lence in a shear flow near a wall can take place through
the formation of turbulent spots or Emmons spots [1-3].
Small turbulent patches of a characteristic boomerang-
like shape (in plan view) appear in the otherwise lami-
nar flow (Fig. 1). As time passes the spot grows while
it is advected by the mean flow such that, to a good
approximation, the overall shape is invariant aside from
translation and scaling [4, 5]. Thus, at least for a certain
range in time, the spot has a well-defined growth shape.

The aim of the present work is to understand the ori-
gin and types of such nonconvex growth shapes. We will
take a very simple but general approach: try to write
down the simplest possible field theories possessing in-
stabilities which will make a local disturbance grow con-
vectively, and study the possible asymptotic shapes as
well as the conditions under which they appear. Our
starting point will be a class of unstable partial differen-
tial equations describing a large class of phenomena such
as surface waves and chemical reactions. This class of
equations does not include the Navier-Stokes equations,
but even so we expect that our approach might be of in-
terest also for the case of turbulent spots in shear flows.
Experimental investigations of turbulent spots in bound-
ary layers [4-6] make it clear that we are dealing with
an extremely complex process, which is not understood
in detail. Therefore a phenomenological approach simi-
lar to that of Landau might be reasonable: we think of
the interior of the spot as having a nonzero “order pa-
rameter” (which we call u) which vanishes in the laminar
fluid outside. This is, of course, a gross oversimplifica-
tion, since the state in the spot cannot be described by a
single scalar function and since the laminar state outside
it is not steady. Nevertheless, we shall see that even the
simple equations which we will study do give rise to inter-
esting growth shapes and that, by varying the parameters
in the equations, they change completely. Our paper can
be seen as an extension to two dimensions of our previ-
ous work [7], in which similar problems were addressed in
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one dimension. In one dimension one can, of course, not
find nontrivial growth shapes, but the nonlinear terms
can create instabilities, just as in two dimensions.

The first part of the paper deals with shapes formed
by linear unstable partial differential equations in two
spatial dimensions. In principle it is well known how
to find growth shapes in such systems [8-11]. For one-
dimensional systems a large body of work has been done,
but much less is known in higher dimensions. In works
by Criminale and Kovasznay [12] and a series of works by
Gaster [13], the shapes of localized disturbances in a lami-
nar boundary layer were studied via the Orr-Sommerfeld
equation. Our work can be seen as a generalization of
their approach since, even though the Orr-Sommerfeld
equation is not within the category of equations which
we treat here, we can get very similar results. More-
over, since we are free to vary the parameters defin-
ing our equations, we can also obtain shapes which are
completely different with interesting transitions between
them.

In the second part of the paper we shall study the

FIG. 1.

" which a boundary layer has formed. The flow is from left

to right and the visualization by suspended aluminum flakes
(from [5]).

Turbulent spot in water seen through a wall on
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effect of adding nonlinear terms to (1) (see below) and
show how such terms can change the exponential growth
inside the spot into turbulent fluctuations, without, in
many cases, changing the growth shape. In other cases
the nonlinear terms can create instabilities that destroy
the self-similar growth shapes.

I. GROWTH RATES AND GROWTH SHAPES
IN LINEAR SYSTEMS

Our model equation is the following linear partial dif-
ferential equation:

u
i Lo{u} + L1{u}, (1)
where
Lo{u} = xu + aoV3u + bgViu (2)
and
u 8%u 8*u 8%u
L = b
Hub=ag s tag S thga+thg
8%u &83u &3u
+bs 01120x52 ta dzx,3 +ez Ox10x,2’ (3)

with the a;’s, b;’s, ¢;’s, and x as constants. The operator
Lo has the full radial symmetry. In particular, it does
not distinguish z; from z3 nor z; from —x;. Now, think-
ing of a planar turbulent spot, the mean flow selects a
special direction, say x;, and as a consequence it breaks
the 7 = z3 and z; — —z; symmetries, whereas the
9 — —xo symmetry is retained. The operator L; has
therefore, up to fourth order, all the symmetry breaking
terms compatible with the symmetry of such systems.

Thus, in a shorthand notation, we have a linear partial
differential equation describing the behavior in time and
in space of a scalar field u(&,t),

I ()
1 8:1:2

where ¢ is an operator which is an arbitrary function of
the spatial derivatives —8—27 and 8—2—;. Our model equation
(1) is a special case of (4), in which the operator ¢ is a
fourth-order polynomial in two variables. More generally,
we can write ¢ as an expansion in powers of the operators

9 _ 9 _
Bz1 D1 and Bza Dz,

é(D1,D2) = fo + fiD1 + faD2 + faD? + f4D1 D,
+fsD3 +---, (5)

where the f;’s are constants. If we further confine our
attention to problems in which the 2 — —z2 symmetry
is present, we recover (1).

Starting from an initially localized disturbance, we now
look for solutions to (4) which have the scaling form

w(&,t) ~ MO (6)

in the limit of large ¢t. The convective exponent /\(% )
will in general be complex and its real part A" gives the
asymptotic exponential growth or decay rate of the field u
for an observer moving with velocity ¢ = Z/t. An initially
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localized disturbance will diverge if Re[A(¥)] is positive
for some ¢. In this case, Re[A(¥)] = O defines a curve
in the (vi,v2) plane, which gives the stationary growth
shape of the disturbance. Such a shape is invariant in
time as can be seen from (6): for all points on the curve
[in (x1,z2) space] the distance to the center (0,0) simply
scales in time.

Substituting solution (6) in (4) and rewriting spatial
derivatives as derivatives with respect to ¥ = &/t, we find
asymptotically [i.e., neglecting terms o(1/t)] that A(%)
satisfies

(7)

. oA
,\(a)za-v,;,\+¢(a’\ )

8vy’ Jvy

where ¢ is the function appearing in (4) which determines
the model. This equation is the Clairaut equation [14]
which can be solved by differentiating both sides of (7)
with respect to . The general solution will be given by
a four-parameter family of “planes,”

As(V) = V- 5+ ¢(p1,p2), (8)

with the components p; of the vector p' as arbitrary com-
plex numbers. There are also solutions with no arbitrary
constants — the singular solutions — which will be of
interest since they can fulfill the important physical re-
quirement that Re[A(¥)] should go to zero for sufficiently
large |G]. These solutions are obtained by eliminating

Vs = § between (7) and

7= —Vao, (9)

which results from the differentiation procedure men-
tioned above. The elimination of 7 corresponds to first
inverting (9) to obtain p(¥) (this procedure will be re-
ferred to from now on as inversion) and second inserting
this result back into (7) in order to find the dependence
of A on 7.

The problem of finding asymptotic solutions to (4),
starting from initially localized disturbances, can be for-
mulated very directly in terms of Fourier integrals. For
the Fourier component

uglt) = / dFe— 0%y, 1), (10)

Eq. (4) becomes
Oug
ot

Setting ¢(iq1,i92) = vg, the solution to (11), when ex-
pressed again in terms of spatial coordinates, becomes

= ¢(iq1,192)ug- (11)

(@, t) = / dqeliTEHvat)y (¢ = 0), (12)

with the limits of integration from —oo to +oo in both

. variables, g, and gs.

We now set & equal to (£ + ¥t) in order to obtain the
solution in a moving frame of reference. For sufficiently
large t, the integral can then be evaluated by the saddle
point method and we obtain an asymptotic expansion
with respect to t. For an initially localized disturbance,
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ug(t = 0) will be a smooth function of § and the main
contribution to the integral will come from a saddle point
of

fl@) =vg+iq-v. (13)

The problem now is to find all the saddle points of f as
functions of ¥ and choose the right one (or right ones),
that is, the one to which the path of integration, initially
passing through the real axis, can be deformed without
crossing singularities and which gives the largest contri-
bution to the integral. The next step would be to expand
the function f around the saddle point thus obtaining an
asymptotic expansion with respect to t. However, in the
present work we will only be interested in the exponen-
tial approximation for the integral, which has the form
u ~ ef(B)t equivalent to (6). Here gy represents the
right saddle point and f{go(?)) is simply what we earlier
called A(%).

We observe that the inversion defined in terms of (9)
corresponds to the problem of finding the saddle points
of f(¢) in (13). As a matter of fact, (9) with § = iq is
exactly the equation which determines the saddle points
with ¢(ig1,192) = vg. This equation will in general have
more than one solution for each value of ¥, so that the
choice of the right saddle point must involve an analysis
of the behavior of f(¢) around each of them. When the
problem involves functions of one complex variable this
analysis is relatively easy. In the present case, however,
working with two complex variables, the choice of the
right saddle point for an isolated value of ¥ is not always
clear. Instead we follow the contribution from all saddles
for all 7. We can then look at the real part A" (¢) from
each and ask for the well-behaved one(s): the one(s) that
go(es) to —oo when v = |v| becomes large. As we will see
later, the choice of the well-behaved A™(¥) might imply
that one has to change from one solution p(%) to another
when the corresponding solutions A" (%) cross. Since p =

-

VA, the change will correspond to a discontinuity in the
slope of A(¥), although the function itself is continuous.

A. Examples with radial symmetry

In order to show how the formalism works and intro-
duce important examples for later generalization, we will
now treat two examples in which complete radial symme-
try is present. We shall therefore consider only Lg in our
model equation (1) and, consequently, all growth shapes
will be circular.

As our first and simplest example we discuss the sym-
metric diffusion equation which can be made unstable by
the addition of a term linear in w. Taking ap = 1 and
bo = 0 in (2), the equation for u becomes

1o}

8—1: = xu+ VZu (14)
and thus the function ¢, defined in (4), is the simple
second-degree polynomial ¢(p1,p2) = x + p%, where p =
|7]. In this case, inversion is trivial:

0¢

v; = _8p,- (15)

leads directly to

1
P = =5, (16)

whereby we find

2
A(V) = ¢ +vip; = x — %» (17)
where v denotes |7]|.

In this first example A(7) is real, but this will not be the
case if higher order derivatives are present in the equation
for u. In any case, the information concerning the stabil-
ity of a disturbance is contained in the real part of A(%).
The interesting situation is the unstable one, in which x
is positive. In this case, an initially localized disturbance
will grow or decay exponentially with growth rates vary-
ing from the maximum value x to —oo, depending on the
velocity of the moving frame of reference from which one
observes. In the unstable cases in general, Re[A(7)] will
have this kind of behavior: positive in some finite region
of the (v1,v2) plane, but going to —oo for large enough
v = |&]. The values of (vq,v;) for which Re[A(?¥)] =0 —
the neutral stability curve—will then define the growth
shape of the disturbance. In this simple example, the
shape is given as the circle v = 2,/x. Further, since
@ = 0 is in the unstable region (14) is absolutely unstable.

Our second radially symmetric example is a model with
higher derivatives, which is obtained from (2) with x = 0,
ag = —1, and by = 1:

ou a 4

i Veu — VZu. (18)
This is the type of linear equation appearing in sys-
tems with “negative surface tension,” for example, the
Kuramoto-Sivashinsky equation [15, 16] or the Swift-
Hohenberg equation [17]. Here the function ¢(p) has the
form

¢(p) = —p° - p* (19)

and, due to the presence of the term p*, the inversion
becomes nontrivial. Using (9), we find that p; = %p(v),
where p(v) satisfies

4p® +2p = . (20)

This equation is a third-degree polynomial in p which
has one real and a pair of complex conjugate roots. It is
easy to see that the path of integration can be deformed
in order to pass over the complex roots in the direction
of steepest descent, whereas it cannot for the real root.
Thus only the complex conjugate pair contributes and
the solution can be written explicitly as

p(v) = —2(es — a0 £ %2 ey 1 0), (21)

where

1
1( / 8 °
si:i( v2+ﬁ:{:v) (22)

and we can calculate A(v) as
A(v) = ¢ +vip; = 3p* + p°. (23)
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The real part of A(v) is positive around the origin and
attains its maximal value 0.25 for # = 0. It decreases as
v becomes large, defining the circle v = 1.6 as the growth
shape.

It is instructive to understand the choice of the right
solution p(v) from the procedure described in the end
of the previous section. The complex conjugate pair so-
lution will give the well-behaved A" (v) discussed above.
The real solution, on the other hand, will give a A"(v)
which goes to 400 as v increases from zero. This be-
havior is obviously unphysical and therefore the complex
conjugate pair is the right solution.

The imaginary part of A(v), A*(v), is different from zero
and when that is the case there will be oscillations su-
perimposed with the profile determined by the real part,
whose wave vector is given by Vz\:(#). In the present
example, \(%) has a conical shape, which gives a radially
symmetric wave vector whose modulus is approximately

constant (=~ 1/4/2) over the range of values of positive
A" (v).

B. Perturbation expansion for growth shapes

If the symmetry breaking terms L; given in (3) are
small compared to Lo, we might attempt to find the
growth shapes perturbatively, starting from the circular
ones given by Lg.

Assume that we have an equation with a ¢ of the form

& = ¢o(P) + €d1(P), (24)

where €¢; is small compared to ¢9. The parameter € is

a formal parameter, which means we will do the analysis

in powers of €, but in the end it will be set to e = 1.
According to (9), the velocities are given by

99 0o Oy
_ _9¢0  9¢1 25
Op; Op; ¢ Op; (25)

V; = —

and for small € the solution p;(¥) of (25) can be expanded
as

- = p; (7) +0pi(7).
(26)

pi(¥) = p; (9) +epi (5) +€°p} (9) +

But the velocities can also be found from the unperturbed
variables as

O¢o

V; = — 6p,? . (27)
Thus, equating (25) and (27) we find

M& -+ 1—834&_

8p2pY "7 " 2 5p8plop]

+66i;

0p;dpy + -
8%, 1 83

te—5o0P; + €0
oplap) 7 2" 0p)opopy

6piépr +--- =0, (28)
where 6p; = ep} + €2p? + --- and summation over j and
k is implied. Now we can calculate A(¥) = ¢ + v;p;. By
expanding and using again v; = ——%3— we find

A= dot") + v + ey + 5 5 Og"oapispj .
8¢ 1 8%¢;
LT P P 29
805 ite 28p‘38p‘; Piop; + (29)

which, to lowest order in €, becomes A = A% +¢¢; [P °(¥)].
For the higher orders in €, the result will depend ex-

plicitly on the correction ép;. In second order we need

8p; to first order, i.e., 6p; ~ ep!l. From (29) we obtain

bs] 1 8
A= X0 4 ey + €2 (aﬁ pr+ = 5 6pog;0p,pj> , (30)

where p} is found from (28):
PP | O

= — . 31
oPope™ T op? (1)
When this is inserted back into (30) we find
1
A=A+ ey + 5€ gd’ pl. (32)

The equation for p} in (31) is a linear equation. If we
denote the derivatives of ¢ and ¢, as

0%¢o 9¢1
ij L; = s 33
1= Bp0opy op? (33)
Eq. (31) becomes
M;;p} = —L; 34
]

with the solution p} = —(M~!);;L;. Finally setting ¢ =

1 we obtain
A=X0 4+ ¢y — %(M_l)ijLiLja (35)

which gives A(¥) to second order in the perturbation am-
plitude.

We now apply the results obtained above to pertur-
bations of the two radially symmetric models, (14) and
(18), discussed in the previous section. We will consider
in both examples the same perturbative term

¢1 = a1p? + c1p3 + cop1p3 (36)

as obtained from (3) with az = b; = 0.

As the first application, let us consider the model given
in (14) for which ¢9 = x + p? (case 1). We need to
calculate the quantities M;; = 28;;, L1 = 2a1p1 +3c1p? +
c2p% and Ly = 2cap1p2. To order e,

pl=—2091 o Bep? — Lo
1 2 Op1 1P1 = 6P 5C2P2
1041
1_ 1041 37
P2 2 apz CaP1P2, ( )

where we have dropped the superscript 0 on the p’s. From
(35), after expressing the p;’s in terms of the v;’s by p; =
p? = —2v;, finally we obtain
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a;(l—a
A(v1,v2) = A%(v) + —1(—4—llvf 81 (1 - 3a;)v}
co 9c2 2
et - 2t g
3
;Z (—cl + cz) viv2, (38)

where \°(v) is given in (17).

The other example is the model given in (18) for which
¢o = —p? —p* (case 2). Now the matrix of second deriva-
tives of @9 is

v [2<1 +2p%) + 8(p1)?

8p1p2
8p1p2 ] (39)

2(1 + 2p?) + 8(p2)?

and, as before, Ly = 2a;p; + 3¢1p? + cop2 and Ly =
2cap1p2. The matrix M~ is then given by

M1t 2(1 + 2p?) + 8(p2)? —8p1p2
D —8p1p2 2(1 + 2p?) + 8(p1)?

(40)

where D = 4(1 + 2p?)(1 + 6p?) is the determinant of M.
It is easy to show that D never vanishes and therefore
the inverse M ~! always exist. When these expressions
are inserted into (35), we obtain A expressed in terms of
the p;’s with \° = p? + 3p*. Next, we have to express
everything in terms of the v;’s using the relations found
earlier for the unperturbed system. As noted in the pre-
vious section, p; = Zp(v) with the solution p(v) given by
(21) and (22). Finally, the growth shape is determined
from the equation A"(¥) = 0.

In Figs. 2 and 3 we show level curves for A"(¥) for
the cases 1 and 2, respectively. In both cases the circular
shapes distort due to the symmetry breaking terms in ¢;.
In the first case, however, these distortions never lead to
nonconvex shapes, whereas for the second case there will
always be nonconvex contours, even for small values of
a1 and ¢;. This is due to the fact that A" (¥) is singular
around 7 = 0 as will be shown.

When (22) is inserted into (21), we find the following
expansions (through order v2):

1 i 3,
4—v+ﬁ<1+ﬁv >:|, (41)

1 1 7
2(0) = —= — Zv? — v. 42
FO~-378" "3 (42)

Note that in this case p? does not vanish as v — 0. Fur-
ther,

— (2
pi (V) ~ » [

1 7
)~ =+ —=v 43
O (43)
and
r—'~1 12
A(V) = 1 81) . (44)

Let us first suppose that ¢; = ¢z = 0. Then the per-
turbation expansion to first order becomes
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FIG. 2. Level curves for A"(%) as obtained from pertur-
bation theory for the case of positive Laplacian (case 1). (a)
ai=2andc;i =c2=0and (b) a1 =c1 =c2=1.

1 1 aiy a (‘U1 )2
) A = — —p? — g2 2 (V1T 45

MO~z -gr e 2 G (45)
The last term can create singular behavior since it does
not vanish as v — 0. In polar coordinates — v; = v cos §
and vy, = vsinf — we can solve for the level curves of
(45) (A = Ao), and for simplicity neglecting the v? term

we obtain
8 (C — % cos? 0) , (46)

where C = % — Ag. When a; > 2C the contour is singu-
lar, passing twice through zero at angles +o and 7 + «,
where a = cos™!1/2C/a;. Typically, level curves on a
surface would only have such singular shapes for isolated
parameter values. Small changes in the parameter would
either result in a simple (nonconvex) curve or two dis-
joint closed curves. The reason for the strange behavior
is that the surface in (45) is not defined at r = 0. The
limiting value for r — 0 depends on 6. For a; < 2C, the
contours are indeed simple closed curves with nonconvex
parts (violin shape).

When the c terms are added, no new singularities are
encountered. The simplest case is ¢; = ¢; = ¢. Again

r(0) =
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neglecting the v? term, we find

3
r(0) = 5ccosé? + \/SC’ + (§¢2 — 4ay) cos? 0, (47)

where the sign is chosen such that » > 0. Now, the
%ccos 0 term moves the front end forwards and the back
end backwards, so a nonconvex, boomerang-shaped spot
is formed for 8C > 4a; — %cz.

This is seen more clearly when c¢; # cz. In this case

(45) becomes

1 0?2 2 a1,
Aza—§(1+a1cos 0)——2——cos 0 + B(6)v, (48)
where

0.2 }
0.2

(a)
v, ©
-0.2
-04
-04 -02 O

|
0.5
\Y; 0

f
HANNN

-l -05

\

/

-1 -05 o] 05 |

FIG. 3. Same as Fig. 2 for the case of negative Laplacian
(case2). (a)a1 =0.5andc; =c2 =0, (b)a; =1 = ¢z = 0.5,
and (c) a1 = 0.5, c; = —0.5, and ¢z = 0.5.
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B(6) = -1%[(c1 — c2)cos 30 + (3c1 + c2) cosb].  (49)

The level curves of A for this case are shown in Fig. 3(c).

As we saw, it is possible to obtain shapes very much
like the turbulent spot, even within lowest order pertur-
bation theory for the case with negative Laplacian (case
2). We expect the perturbation theory to be valid only
sufficiently far from the origin [i.e., for y2 > const xa; in
(45)] since the perturbative corrections dominate at the
origin and create an ill-defined A(¥) surface. As we shall
see in the next section, the reason for the singular behav-
ior is the degeneracy of the case a; = ¢; = ¢c3 = 0. As
soon as the system is perturbed, a new solution appears,
which must be properly taken into account.

C. Full solution of the basic model

In the present section we shall discuss in detail the
calculation of \(¥) for the model equation defined by (1),
which corresponds to the expansion of the operator ¢
in (5) up to fourth order in the operators D; and Ds.
For simplicity we shall confine our attention to the case
defined by (4) where the operator ¢ is given by

¢(D1,D2) =x — (1 —a)D} — D3

—(D? + D2)? 4+ ¢D,(D? + D%).  (50)

The role played by the constant x is simply to shift the
whole surface A(¥) up or down, so by changing its value
we can obtain different growth shapes for a given surface
A" (¥). This procedure is equivalent to disregarding x and
redefining the growth shapes as any level curve of A"(7¥).
We observe that our model, defined through (50), will be
unstable only if x > —%.

As discussed earlier, Eq. (4) can be solved by a decom-
position into Fourier modes and a subsequent integration
back to the space of coordinates. Transforming to a frame
of reference moving with velocity ¢, the Fourier integral
can be written as

1(3,t) = / dge! DT (g), (51)

where f(q) is defined in (13) and U(g) is assumed to be
a smooth function of §. The eigenvalue v(§) (or com-
plex dispersion relation) is obtained from (50) with the
substitution Dy — ig; and f(q) becomes

fF@=[x+01-a)}+d5 —q
+i(v1g1 + v2q2 — cq147), (52)

where ¢ = |g]. In order to evaluate the integral in (51),
we must now find the saddle points of f, which is taken
as a function of the complex variables q; and g;. If we
choose the right one, say qo gi)'), then the integral can be
estimated as I(7,t) ~ ef(®t = A(@)t  Before devel-
oping this calculation, however, we will look at the real
saddle points of f(g), which can give some interesting
information about A" (7).
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1. The real saddle points of f(q)

We observe that if f(§) has a real saddle point, it will
be a critical point of its real and imaginary parts as func-
tions of real . We then start by looking at the expression
for f in (52) as a function of real g;. The real part of f
is a fourth-degree polynomial in the two real variables
and it must have at least one global maximum since for
large enough |g;| it falls to —oco. More generally, the
global maxima can be degenerate and saddle points (in
this context meaning one of the possible critical points of
a real function of two real variables) may also be present.
The global maximum of the real part is important since
it actually ¢s the right saddle point contributing to the
integral at the velocity whose components are

V1= c(3q%m + q%m)’
V2 = 2¢q1mq2m- (53)

This is the group velocity of the wave packet [18] and it is
found as the velocity which makes the imaginary part of
f(q) stationary (to first order) at g,,. Moreover, since the
saddle point is real in this case, the gradient with respect
to ¥ of A"(¥) (which equals 5™ = —¢ %) vanishes and, in
fact, it can be shown (see the Appendix) that A"(7) is a
maximum at that velocity. A similar result is also true
for other critical points of Re[f] which may contribute at
the corresponding velocities given by (53), as shown in
the Appendix. Therefore, from a simple inspection of the
real part of f(¢) and a determination of its global max-
ima, we can find the points in the (vq,v2) plane of largest
growth rate for the disturbance as well as the value of this
quantity. Furthermore, other critical points of Re[f] be-
sides the global maxima may be the contributing saddle
points at the corresponding velocities.

We now go back to f(§) in (52) and look at the critical
points — maxima and saddle points — of Re[f] for real
q;- We note that there is a local minimum at the ori-
gin, which nevertheless never contributes. When a = 0,
Re[f] has its maximum value x +  for values of ¢ on
a circle around the origin. For nonzero ¢, this degener-
acy will be brought through (53) into the (vy,v2) plane,
where points on a circle with its center displaced from the
origin in the v; direction — the value of this displace-
ment depending on the values of ¢ — will all have the
same maximum exponential growth rate. For points in
the (v1,v2) plane which lie inside and outside the circle,
the growth rate will of course be smaller and an inter-
esting annular growth shape can be obtained for values
of x slightly above —%. When this value is increased,
which correspond to taking lower level curves of the sur-
face, we expect that shape to change since its particu-
lar feature comes from the degeneracy of the mazimum
of A"(¢). The simplest possible transition is to a single
closed curve, through the shrinking of the inner curve, as
shown in Fig. 4(a). The situation, shown in Fig. 4(b), in
which the inner closed curve touches the outer one at the
point S, is not possible. S would then be a saddle point
and we know from the Appendix that the surface A™(?)
cannot have a saddle point in this case. For ¢ = 0, the
circle in the (v1,v2) plane collapses to the origin ¥ = 0
and we are back to one of the radially symmetric cases

(a)

(b)

FIG. 4. (a) Transition sequence between shapes for the
model described by (50) with @ = 0 and nonzero c. (b)
Growth shape corresponding to the level curve of A(¢') through
the saddle point. The exponentially growing parts are hatched
and the saddle point is labeled S.

of Sec. II with trivial growth shapes.

For nonzero a, say positive, the degeneracy is broken
and Re[f] will have two global maxima in the g, axis
(g1m = 0) and two saddle points in the ¢; axis. For
nonzero ¢, the group velocity lies on the v; axis as can be
seen from (53). The two saddle points of Re[f] may also
contribute at the corresponding velocity given by (53),
since they are critical points of Re[f] as well. If this is the
case, A" (¥) will also have a saddle point at that velocity,
as shown in the Appendix. We now have the possibility
of obtaining interesting growth shapes. For example, the
shape shown in Fig. 4(b) is now possible, since we may
have a saddle point on the surface A”. In Fig. 5, we
show a possible transition between shapes for the present
case which includes the shape shown in Fig. 4(b): lower
level curves give the same transition sequence as shown in
Fig. 4(a), but the higher ones show an interesting shape
with a concave part, similar to the boomeranglike shapes
of turbulent spots. On the other hand, if ¢ = 0 the group
velocity is zero, but also the velocity at which the saddle
points of Re[f] might contribute as a saddle point of f
[see (53)]. Therefore the saddle point does not contribute
and A" has a maximum at # = 0. The growth shapes are,
however, nontrivial as we will see in the next subsection.

2. The complex saddle points of f(q)

We now proceed to the calculation of A(¥) for all .
The saddle points of f(g) in (52) are the points (g1, g2)
in the complex plane which satisfy the equations

o . . .

———8qf =2(1-a)qg1 — 4¢3 — 4q143 + vy — 3icq? — icq2 = 0,
1

8F _, 4q3 — 442 j 24 =0 (54)

5;2' =2q2 — 495 — 497q2 + w2 — 21cq192 = 0.

The maximum possible number of solutions for this sys-
tem of algebraic equations is nine for given values of a,
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FIG. 5. Sequence of growth shapes corresponding to (50)
with nonzero a¢ and ¢. The exponentially growing parts are
hatched.

¢, and v;, since each equation is cubic in either of the
variables. However, the symmetry of the equations re-
duces this number as we can see from the example with
radial symmetry in (18). In this case, a = ¢ = 0 and
the system of two equations reduces to the cubic equa-
tion (20) for p (= iq) and p;(v) = %p(v). Thus, there
are only three solutions, two of which are a complex con-
jugate pair. In the present case, we have to solve the
system (54) explicitly. Solving the first equation for g3
and inserting the result into the second equation gives
an algebraic equation of fifth degree in ¢;, whose solu-
tions can be found numerically and the corresponding
g2’s can be determined. There are therefore five saddle
points (g1, g2) for each value of ¢. This result is still true
ifa =0o0r ¢ =0in (54). In this sense, the two asym-
metries are similar and, as will be seen, give rise to the
same type of structure in A(?).

In order to gain some understanding of the behavior
of the solutions, we look at the system (54) with v, = 0.

In this case, three of the solutions will be (qgi), 0), where
the qgl)’s are roots of the cubic equation

2(1 — a)g1 — 4¢3 + ivy — 3icg? =0 (55)

/ C
g2 = 4 /1 —q12 — z—2—q1. (56)

Thus we can say that there are two different kinds of
saddle points, coming from either (55) or (56). As in
the radial symmetric example mentioned above, the so-
lutions of the cubic equation (55) will correspond to two

and the two others are

2vuy —c

:Z————-
q1 4a+c2’
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solutions A"(vy, v, = 0): one which comes from the con-
tribution of a complex conjugate pair of roots and goes
to —oo as |vi| becomes large — a well-behaved solution
— and another which diverges for large |v;|. However,
the two saddles in (56) also correspond to a well-behaved
solution, which turns out to have the very simple form

A" (v1,v2 = 0) = % (1 - %gi) : (57)

These solutions are shown in Fig. 6 for three distinct
asymmetric cases which we shall consider below. As can
be seen, the solutions cross each other which gives us
the possibility of changing from the saddle point of one
kind to the saddle point of another kind without creating
discontinuities in A(7).
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FIG. 6. A" (v1,v2 = 0) for (a) a = 0.25 and ¢ = 0, (b)

a=0and c =1, and (c) a = 0.25 and ¢ = 1. The solu-
tions correspond to well-behaved contributions from the sad-
dle points in (55) and (56).
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We now look at the saddle points for a generic value of
(v1,v2). They can be found numerically from the roots of
a fifth-order algebraic equation, as mentioned above, and
the corresponding convective exponents can be obtained.
In Fig. 7, we show A"(¥) for a = 0.25 and ¢ = 0. Due to
the v; & —v; symmetry of the problem, only the region
of the (v1,v2) plane for which v; > 0 and v, > 0 is
shown. Figure 7(a) shows the surface obtained from the
parabolic solution in (57). In Fig. 7(b), the same is shown
for the other well-behaved solution. They were obtained
in this way by following the respective saddle points for
increasing vp. The physical solution, which is shown in
Fig. 8(a), can be obtained as a single-valued function by
taking the right branch of A\"(%) (the one which decreases
for large v). The surface has a discontinuity in its first
derivative, which corresponds to changing saddle points.
At the branch points, marked by dots in Fig. 8(a), the
saddle points of different kinds merge together and the
solution becomes smooth. The other branch of A\"(¥) has
a saddlelike structure: for large v, it goes to —oo in the
v direction, whereas it diverges in the v, direction.

The results obtained above, concerning the general
structure of A"(%), do not depend on the specific numer-
ical values of a and ¢, provided that they are not both
zero. This can be seen from the solution (57), which will

FIG. 7. A"(?) for a = 0.25 and ¢ = 0 obtained from (a)
the parabolic solution and (b) the second solution in Fig. 6(a).
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be present for nonzero a and/or nonzero c¢. The shape of
that surface, on the other hand, will clearly depend on
those parameters, as Fig. 6 shows, and so will the growth
shapes. We show in Fig. 9 the physical solution for a = 0
and c = 1, where points on the circle (v; — 1) + v} =
have the maximum growth rate. The full asymmetric
case of the model (50) is shown in Fig. 10 for a = 0.25
and ¢ = 1. In this case it turns out that the saddle point
of Re[f] contributes at v; = 1.125 whereas the maximum
growth rate is at v; = 0.5.

It is interesting to observe that in the radially sym-
metric case the saddlelike branch of A"(%) is not present.
The way in which it disappears when a — 0 and ¢ — 0
in our model is through the divergence of the curvatures
of the saddle in both directions. Loosely speaking, the
solution goes to —oo in the v; axis and 400 in the v,
axis.

We finally show in Fig. 11 some results of numerical in-
tegration of our model. We find good agreement between
the calculated and the numerical values of quantities like

<
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FIG. 8. (a) Physical solution A"(¢) for a = 0.25 and ¢ =

0. The branch points are marked by dots. (b) Density plot
corresponding to the figure in (a). Only positive values are
shown.
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the maximum growth rate of the packet and the wave-
length of the oscillations present in the patterns. In the
discussions in the previous paragraphs, only the real part
of A(¥) was considered. The imaginary part adds oscilla-
tions to the profile as can be seen in the figures.

II. NONLINEAR EFFECTS

So far we have discussed a class of unstable linear par-
tial differential equations in two spatial dimensions and
the various types of asymptotic growth shapes which an
initially localized disturbance governed by these equa-
tions can have. The next step in this phenomenological
approach is the inclusion in our model of nonlinear ef-
fects. We shall only consider nonlinear terms which tend
to stabilize the equations and restrain the exponential di-
vergence of the linear part. If only small amplitude dis-
turbances are present at the laminar-turbulent interface,
nonlinear effects are not expected to change the asymp-
totic growth shape of the linear theory significantly. We
shall give examples where this is the case, and also show
how it can break down by the occurrence of shocklike
disturbances at the interface.

-1.0 -

-20 -

B A e e B
-l0 00 10 20 30 40 s0

\Y

FIG. 9. Same as Fig. 8 for a = 0 and ¢ = 1. The circle of
maximum growth is drawn in (a).

The inclusion of nonlinear effects in linear models can
be done in various ways with various purposes. Since
we are interested in the generation of turbulent spots we
shall select such nonlinearities which, although quench-
ing the exponential divergence of the field, will still allow
turbulent fluctuations inside the spot. We shall discuss
two different approaches: first, the addition to the lin-
ear equations of nonlinear terms in the field u and, sec-
ond, the use of a nonlinear mapping with discrete ver-
sions of the previous models. When speaking of “tur-
bulent spots” we must explain precisely what we mean.
By “turbulent” we mean that there is at least one pos-
itive Lyapunov exponent. Since the fields in question
will be strongly spatially disordered this will in fact im-
ply a whole spectrum of positive Lyapunov exponents
with a number growing in proportion to the size of the
spot. Now, Lyapunov exponents are usually defined as
“ergodic” quantities: on a chaotic attractor any initial
condition will return arbitrarily close to itself and thus
we can ensure, by sufficiently many iterations, that the
spreading rate is averaged over the whole attractor and
does not depend on the initial condition. In the present
case this is not possible. The spot is strictly speaking not
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FIG. 10. Same as Fig. 8 for a = 0.25 and ¢ = 1. The

saddle point is marked in (a).
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FIG. 11. Density plots from the numerical integration of
the model with ¢ in (50) for (a) a = 0.25 and ¢ = 0 and (b)
a=0.25and c=1.

an attractor since it is always expanding. For sufficiently
large spots we believe, however, that the chaotic behavior
inside the spot is largely independent of its size. Thus we
want to compute an average spreading rate of initial con-
ditions inside the spot. One has to bear in mind that the
medium outside the spot is unstable and will make ini-
tial conditions spread exponentially in a trivial way. To
avoid this we have to ensure that the Lyapunov vector
has support only inside the spot at all times. As we shall
see in the following this leads to positive Lyapunov expo-
nents and since they are quite independent of time and
typically an order of magnitude smaller than the instabil-
ity exponent outside the spot [the maximal value of A(v)]
we believe that our procedure makes sense, although it
would clearly be useful to have a rigorous theory for such
expanding chaotic systems.

One model known to give chaotic behavior is the (gen-
eralized) Kuramoto-Sivashinsky equation (59), variants
of which occur widely in nonlinear systems such as sur-
face waves, chemical reactions, or flame fronts. Thus we
take as our model

ou ou \? ou \?
T LO{U}+L1{U}+d1<5;‘1‘) + d3 (51—2) R
(58)

where Lo{u} and L;{u} are the linear terms given in
(2) and (3), and d; and d; are constants. Note that by
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differentiation with respect to the spatial variables (e.g.,
z1) one gets Burgers-like equations with nonlinearities

of the form u2%. We shall consider two different cases:

8x;
x = 0 and x # 0, which give rise to completely different

behaviors.

A. The case x =0

We shall first consider the case in which the constant
x in (2) is zero. In this case the model has an “interface
symmetry:” invariance with respect to u — u + const.
This means that the field will tend to grow in the direc-
tion specified by the sign of the nonlinear term. We have
recently studied the analog model in one dimension [7],
and before going on to the two-dimensional case (58) we
shall give a short description of the pertinent results of
that work.

1. The one-dimensional case

Let us consider the one-dimensional partial differential

equation (PDE)

oh 2 4 3 2

E:—Vh—v h+cVh + (Vh)“. (59)
For the linear part, calculations analogous to the ones of
Sec. I C give the convective exponent A(v). The bound-
aries of the spot are given by the zeros of A(v) and for
¢ = 0 these are vy ~ +1.6. For nonzero c¢ the forward
and the backward fronts move with different velocities.
Thus vy ~ —1.4 and 'u}F ~ —1.8 for ¢ = 0.1.

In Fig. 12 we show the result of integrating (59)
numerically with initial conditions given by a narrow
Gaussian and with ¢ = 0. The system size was L =
10 000 and the integration was performed up to a to-
tal time T = 3000. Figure 12(a) shows three snapshots
at equally spaced intervals of time and, as can be seen
explicitly from Fig. 12(b), the initial bump clearly ap-
proaches a constant growth shape [19], i.e., asymptotically
the overall shape of h(z,t) is given by

hen(z,t) = tH(z/t), (60)

where H is independent of time. The bump grows side-
ways with velocity vy ~ 1.60 in accordance with the lin-
ear result above and upward with a velocity vo =~ 0.43
in agreement with the numerically estimated mean ve-
locity for a large, homogenous system. Note that this
type of “growth shape” is different from the one used
earlier in this paper. Here it is a shape in the field di-
rection, whereas earlier it was a shape in (z1, ;) space.
To distinguish them, we shall refer to the present growth
shapes as “nonlinear.”

From Fig. 12(b) we see that the growth shape is well
approximated by a central parabolic part joined with con-
tinuous Vh — but discontinuous V2h — to straight edges
nearer to the fronts. We observe that, if a small amount
of noise is added to the initial Gaussian, the macroscopic
shape is unaltered although the exact microscopic mirror
symmetry is lost. Indeed, all localized initial conditions
that we have tried seem to evolve into the same macro-
scopic growth shape.
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When the overall shape (60) is subtracted from h(z,t)
the field shows strong fluctuations (Fig. 13) whose sta-
tistical properties seem indistinguishable from the solu-
tions of (59) grown from uniformly random initial con-
ditions, except for short regions around the fronts. As
in the homogeneous system, the h field is clearly chaotic.
When computing Lyapunov exponents [20], as mentioned
above, one has to keep in mind the strong linear diver-
gence of the flat state. To avoid this, Lyapunov vectors
with support inside the growth region must be used ex-
clusively, and this is accomplished most easily by taking
initial conditions for the Lyapunov vector with support
only in the initial seed. In this way the Lyapunov vector
spreads with the spot and we found the largest Lyapunov
exponent for the growing shape to be identical to that of
a large homogenous system.

When the value of ¢ is nonzero, the z — —z symmetry
is broken and the initial bump approaches an asymmetric
growth shape, as shown in Fig. 14(a) for ¢ = 0.1. It can
nevertheless be well approximated by the same central
parabolic part and the two straight edges as in the case
¢ = 0. For larger values of ¢, however, the system shows
a new type of instability. Figure 14(b) shows the result
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FIG. 12. Numerical solution of the Kuramoto-Sivashinsky

equation with an initial seed. The grid spacing was 0.5. (a)
The solution is shown at times ¢; = 1000, ¢t = 2000, and
ts = 3000. (b) The solutions at the three times of (a) are
superimposed by the scaling h — h/t and £ — z/t. Due to
the mirror symmetry only positive  are shown. The dashed
curve is the parabola y(¢) = 0.434 — 0.25¢2.
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FIG. 13. Remaining field after the growth shape is sub-

tracted from h(z,t), for a fixed time (¢ = 3000) as a function
of x.

of the numerical integration of (59) for ¢ = 0.2. The
right-hand part of the growth shape is still well defined,
but the left-hand part now consists of a series of steps,
in which, clearly, our numerical solution is insufficient.

To find the nonlinear growth shape and understand
this instability we shall make the following ansatz

h(z,t) = tH(z/t) + g(z,t), (61)
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FIG. 14. Numerical solution of (59). The field and the
spatial variable have been scaled as h — h/t and z — z/t.
(a) ¢ = 0.1. The dashed curve is the parabola y({) = 0.396 —
0.24£2. (b) ¢ = 0.2. Note the step structure on the left side.
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where we shall also assume that g has no growth rate
of its own, i.e., (¢§) = 0. Inserting (61) into (59) and
taking the limit ¢ — oo — since we are interested in the
asymptotic growth shape — gives

o
99 _ A(€)— V29— Vig+cV3g+ (Vg)? +2H'(€)Vg,

ot
(62)

where ¢ = z/t and A(¢) = [H'(£)])? + €H'(€) — H(¢) and
where the neglected terms are O(1/t). For very large ¢
we can think of £ as a slowly varying variable, essentially
constant over a wide range of  (in fact, % = 1). In that
case, (62) differs from (59) only by a constant A(£) and a
linear term in Vg: 2H'(£)Vg. But such linear terms can
be removed by a Galilean transformation, i.e., by going
into a moving frame, which should not alter the growth
rate of g. Now, Eq. (59) with homogeneous boundary
conditions in a sufficiently large system has growth rate
vg(c). Thus, in order for g to have zero growth rate, we
must have

A(§) = [H'()” + EH'(§) — H(E) = ~vo(c).  (63)

This equation is our old friend, the Clairaut equation [like
(7)], whose general solution is given by the one-parameter
family of straight lines H,(¢) = a€ + a? +vo(c). There is
also a singular solution with no arbitrary constants which
is given as the envelope of the family of straight lines.
Now, the boundary conditions on (63) are H(0) = vo(c)
and — from the linear theory — that H(£) — 0 at the
edges £ = vfi. These, together with the demand that H
be smooth determine H as

H() = vo(e) — 5€ (64)

for small £. This parabolic shape, which is the singular
solution of (63), is valid in the interval {_ < & < &4,
where {_ = vy + /(vs7)% —4vo(c) and &, = v_'fF -

(vFt)2 — 4vo(c). At £ = &4+ the shape has a discon-
tinuity in the curvature and becomes linear — one of the
straight lines in the family above — all the way out to
&= v?: as shown in Fig. 15(a). In other words, the shape
is found by joining the inner parabola to its tangents [the
ones that go through (U}t, 0), as determined by linear the-
ory]. We observe that the velocity of the moving frame
|v] = 2|H'(§)| < |€+]| is never outside of the growth re-
gion ['v_,v}'], where A(¢) would be zero and not —vg(c).
Thus the solution is self-consistent.

The construction described above cannot necessarily
be done, however. When c is nonzero, say positive, the
velocities v¥ will both have a positive increment indi-
cating that the disturbance is moving towards positive x
while it spreads in the laminar environment. This means
that the allowed growth region [vf_, v'f*] will be displaced
with respect to the center of the parabola in (64) and if
c is large enough none of the tangents on the left side
will lie within that region. Presumably the growth shape
should then be parabolic all the way down to £ = v,
where it should, discontinuously, jump to 0 as shown in
Fig. 15(b). The meaning of such a growth shape is not
clear and presumably gives rise to an instability in the
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system, although it is not easy to simulate numerically.
Within our numerical accuracy, a steplike structure ap-
pears on the left-hand side [Fig. 14(b)], which makes the
linear stability results irrelevant. The left propagating
edge is clearly “nonlinear” and moves with a velocity
v; =~ —1.4, overshooting the velocity —1.23 predicted by
tf{e linear theory. The smallest value of ¢ at which this
happens can be found from vy (c) = —24/vo(c), which
corresponds to £ = v, but with the parabolic behavior
all the way down to the edge. The velocity v, (c) can
be computed explicitly as mentioned above, but vp(c) is
only known numerically. We thus find the critical value
¢, to be slightly above 0.1 in agreement with our direct
numerical findings.

One can find the nonlinear growth shapes in terms of
average growth velocities [19], which, as we shall see, is
totally equivalent to the previous formulation. Here one
assumes that effectively

Oh

i v(Vh), (65)
where v(Vh) is the slope-dependent growth velocity.
Again Galilean invariance can be used to relate growth
rates for systems with different mean slopes. The invari-
ance of (59) under the simultaneous Galilean transforma-
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tion ' = ¢ — 2ut, t' = t, and a tilt h = A’ — uz’ — u?t’,
all with u =const, implies that the average growth rate
v = (2%) at a fixed macroscopic inclination u = (2%) is
given by v(u) = vo(c) +u2. We then look for a stationary
growth shape, which is a solution to (65) with the scaling
form given in (60). Using v(u) = vo(c) + u2, we obtain
the equation for H (&) given in (63).

2. The two-dimensional case

We now return to the two-dimensional case given by
(58). In analogy with the methods of the last section we
shall formulate the problem in terms of a slope-dependent
growth velocity v. We assume that, effectively,

Ou Ou Ou
The invariance of (58) under the simultaneous trans-
formation v = v + @ - &, x;, = z'; — 2d;w;t (with

w; =const) implies that the average growth rate at a
fixed macroscopic inclination is given by v(wi,ws) =
vo + dyw? + daw?2, where vy is the growth velocity at zero
slope, which depends on all the parameters in Eq. (58).
If we now look for a stationary growth shape, which is a
solution to (66) with the scaling form

w(@,t) = tU (%) , (67)
we obtain the Clairaut equation

2 o= oU 9oU
U¢)=¢-VU+v | —, 7 68
O =90+ (5 5e ) (68)
where the expression for v is given above. The general
solution is given as a two-parameter family of planes and
the singular solution is their envelope [14]

2 2
Us(£17§2) = Vg — i - gi

4d, 4dy’ (69)

The next step is to adjust the solutions to the bound-
ary conditions that U(&;,£2) should go to zero at points
(&1,&2) defining the growth shape (as determined from
the linear theory). We then find that U is given by (69)
in a region of the (£1,£2) plane around E: 0 joined to its
tangent planes — the ones whose intersection with the
(€%, £2) plane is a tangent to the growth shape. This solu-
tion is the two-dimensional version of the solution shown
in Fig. 15(a), which can be thought of as a view of the
surface cut through the origin.

As in the one-dimensional case, however, the nonlinear
growth shapes cannot necessarily be adjusted to the lin-
ear ones. For definiteness, we shall take in the remainder
of this section, as the linear part of our model in (58),
the model discussed in the previous section and defined
in (50). The different growth shapes generated by that
linear model can be seen in Figs. 8-10. With the choice
x = 0, we cannot capture the structure in the upper part
of the surfaces A"(¥) and the growth shapes will be sim-
ple curves. In particular, for the case a # 0 to which we

shall confine our attention, the shape will be elongated
in one direction.

We first discuss the case ¢ = 0, for which the elon-
gated shape will be centered at the origin. Varying the
constants d; and d3 in (58), it is always possible to adjust
the linear and nonlinear growth shapes (69): if a is pos-
itive, for example, the shape will be elongated in the v,
direction and we choose d; < d;. We show in Fig. 16 the
results of numerical integration of (58) with a = 0.25,
d; = 0.25, and d; = 0.5. As can be seen, there is a
well-defined growth shape U(g), which can be explained
by the construction described above. Omne should note
that d; and d; have the same sign (here chosen positive).
If they are both negative the transformation v — —u
will take us back to the former case. The equation with
opposite signs in d; and d; seems always to diverge.

When c is nonzero, the elongated shape defining the
allowed growth region will be displaced with respect to
the origin, and if c is large enough none of the planes
which are tangent to (69) will lie within that region.
We again have an instability in the system, which will
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FIG. 16. (a) u(z1,z2) obtained from the numerical inte-
gration of (58) for a = 0.25, ¢ = 0, d; = 0.25, and d2 = 0.5.
(b) The cut u(zi,z2 = 0).
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give rise to the same kind of steplike structure found ear-
lier, making the linear stability results irrelevant. We
show in Fig. 17 the results for a = 0.25, ¢ = 0.5,
dy = 0.25, and dy = 0.75, which is the two-dimensional
analog of Fig. 14(b). The smallest value of ¢, say posi-
tive, at which the instability happens can be found from
vy (¢) = —24/dyvo(c), where (vy (c),v2 = 0) is a point
on the growth shape [v] (¢) < 0] and vo(c) can be found
numerically.

B. The case x # 0

When we consider x in (2) different from zero, we break
the invariance of u with respect to the transformation
u — u'+ const. Now ‘g—'t‘ depends on the value of u itself
and not only on its derivatives as before. This means
that if |u| becomes large the term xu will dominate and,
depending on its sign, v will increase or decrease expo-
nentially. Therefore we cannot obtain a scaling form as
given in (67) according to which the asymptotic growth
of u is linear in time. We shall see, however, that for
nonzero x we can still generate turbulent spots, where
the divergent field inside the spot is replaced by chaotic
or turbulent motion.

We shall confine our attention to negative values of x
in (58) since for any positive x the model diverges. Such
a model with ¢ = 0 was studied earlier in one spatial
dimension in the context of spatiotemporal intermittency
[21]. We further assume that x > — so that the linear
part of the model given in (50) is unstable. With such a
choice, the growth shapes from linear theory can reveal
more of the complex structure present in the upper part
of A™(¥) shown in Figs. 8(a)-10(a).

In order to generate “turbulent spots,” we will look at
the full asymmetric case of the model (50), i.e., a # 0
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FIG. 17. wu(z1,z2) obtained from the numerical integra-
tion of (58) for a = 0.25, ¢ = 0.5, d1 = 0.25, and d2 = 0.75.
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and ¢ # 0, which can generate concave growth shapes.
In particular, this is true for the values a = 0.25 and
¢ = 1. From the transition sequence shown in Fig. 5,
we can see that the concave shape is obtained from level
curves which are higher than the value of A" at the saddle
point A — or equivalently for x < —A%. Moreover, as
can be seen from the convective exponent A" (vy,v2 = 0)
in Fig. 6(c), the disturbance can be convectively unstable
for such high level curves, and in this case the rear and
the front velocities of the disturbance can be found from
(57) as
ot LE ,/2;1 —4) (70)
In Fig. 18 we show the results of numerical integration
of (58). In the linear part (50) we have a = 0.25, c =1,
and x = —0.15, which gives v; =~ 0.05 and vf =~ 0.95.
The nonlinear term has d; = d, = 1. The spot is convec-
tively unstable and moves through the laminar medium
(v = 0) with a velocity v = 0.5. Moreover, the field
u inside the spot is chaotic with a small positive Lya-
punov exponent (= 0.05). As noted earlier, when com-
puting the Lyapunov exponent for the disturbance one
has to keep in mind that the v = 0 state is linearly un-
stable with an instability exponent x + % and thus use

(a)

o
w

100.0

FIG. 18. (a) u(z1,z2) obtained from the numerical inte-
gration of (58) for a = 0.25, ¢ = 1, x = —0.15, d; = 1, and
d2 = 1. (b) Lyapunov vector for the same conditions.
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Lyapunov vectors with support inside the growth region
only. As in the one-dimensional (1D) case, this can be
accomplished by taking initial conditions for the Lya-
punov vector with support only in the initial localized
disturbance. Indeed, the Lyapunov vector corresponding
to the spot in Fig. 18(a), for such initial conditions, re-
mains confined to the region where the spot is, as can be
seen from Fig. 18(b).

C. The nonlinear mapping

A different approach to localized turbulent spots was
presented some years ago in [22]. Here a discrete set of
coupled nonlinear maps was introduced, which created a
chaotic repeller in the system. Thus we take a lattice of
coupled maps of the form

w(@iyn + 1) = u(@,n) + L {u} + L {u} + f(u).
(71)

Here, Z; and n are the discrete spatial coordinate and
discrete time, respectively, and Lgd) and Lgd) are discrete
versions of the operators in (2) and (3). The last term isa
nonlinear function f, designed to have a chaotic repeller
away from v = 0. For small u, f is the identity such that
the linear stability properties are given by Lf,d) and L(ld).

We shall consider the case where the linear system
is absolutely stable, although convectively unstable. In
analogy with [22] we shall choose a nonlinear map f :
[-1,1] — [-1, 1], which is piecewise linear

3x+2 if —-1<z<-1/3
flz) = {2: if -1/3<x2<1/3 (72)
3z—2 if 1/3<z<1.

For such a one-dimensional mapping the dynamics are in-
teresting only outside the interval [—-1/3,1/3] = J, where
f has a chaotic repeller A = {z € [-1,1]: f*(z) & JVn >
0}. Due to the presence of such a repeller, orbits of f out-
side J are unstable and will undergo a chaotic excursion
before they can escape from A back into that interval.
Once z is reinjected into J, the dynamics will be gov-
erned by the linear part f(z) = z.

When the overall dynamics are considered, an initially
localized small disturbance ug will grow and spread itself
as described in the previous sections since the low ampli-
tude instability is completely determined by (71). When
u(Z;, t) becomes sufficiently large so that it falls outside
the interval J, it will undergo a chaotic excursion due
to the presence of the chaotic repeller. However, due to
the strong coupling introduced by the equation involv-
ing also next nearest neighbors, the chaotic trip is much
shorter than it would be for the mapping alone or even
for the model considered in [22] and u(3,t) is reinjected
back into J. Once there, the dynamics at this site will
again be controlled by (71) and the value of u will grow
until either it escapes again or one of its near neighbors
escapes from J, causing a small decrease in the value of
u. This behavior is seen in Fig. 19, where we show u as
a function of time at a fixed site ;. Here the linear part
is (50) with a = 0.25, ¢ = 1, and x = —0.15.

The outcome of the dynamics described above is the
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FIG. 19. Time evolution of u in a point z; of the lattice

for a = 0.25, ¢ =1, and x = —0.15.

development of a disturbance with the same growth
shape as the one obtained in the linear model, but
bounded in amplitude, as shown in Fig. 20. The growth
shape is kept invariant since only small amplitude dis-
turbances are present at the boundary, which are not
directly affected by the mapping. Moreover, the oscil-
lations in the profile are still present. They are strong
correlations which originate from the linear equation and
are insensitive to the mapping. On the smaller scales, on
the other hand, the linear equation is ineffective — it
is unstable only for a range of wave numbers around the
origin — and the structure is erratic due to the mapping.

We observe that, even though f maps the interval
[—1,1] onto itself, the equation is unstable and it is pos-
sible that some of the iterates will escape from that inter-
val, although very rarely. For those iterates, it is enough,
in order to bring them back to J, to extend the interval
over which the mapping acts just by stretching the exter-
nal limits —1 and 1 in (72). Again, the strong coupling
will dominate the dynamics, keeping the values of the
amplitude mostly restricted to the interval J.

<
NS SR 0% A

FIG. 20. Turbulent spot from the map (71) for a = 0.25,
c=1,and x = —0.15.
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APPENDIX: THE CRITICAL POINTS OF A(%)

In order to estimate the integral in (51) for large t,
we find all the saddle points of the function f(§) in the
exponent and evaluate the integrand at the saddle point
which gives the largest contribution, provided that the
contour can be deformed through that saddle. Now sup-
pose that the saddle point contributing at a given veloc-
ity is real. Then, this point must be a critical point of
the real part of f as a function of real . Moreover, the
corresponding value of ¥ will be a critical point of A™(?)
since V(%) = —ig. We now show that the behaviors of
A7(¥) around the critical point ¥ and Re[f(q)] around
the corresponding critical point §o(%,) are the same.

We start by writing f(q), where ¢ is a real vector, as
R(q) +i[¢d- ¥+ I(§)]. The behavior of R(q) around its
critical point gp can be determined from the evaluation
of the expression

Ag = Ri1 Ry — (Ri2)? (A1)
at the critical point. Here, R;; simply means %;;, a
notation which we shall adopt also for first derivatives
and for I and A" as well. Now, if Ag is positive, go will
be a maximum if R;; < 0 or a minimum if R;; > 0. For
negative A g, ¢p will be a saddle point. Finally, if Agp = 0,
the methods for the determination of the nature of the
critical point become more complex.

In order to find the behavior of A\"(¥) around ¥y, we
now calculate Ay, which is defined in the same way as
Apg in (Al). So we need the quantities A]; which are
given by

92X dq:

o og 9%
8v,~8vj - avj

2
s (42)

where qj- is the component j of the imaginary part of 4.
Now, the dependence of ¢ on ¥ is determined from

Ry + i(v1 + Il) =0,

Ry + ’l:(’l)z + Iz) =0, (A3)

which are the equations for the saddle points. For a
change dv in ¥p, there will be a corresponding change
dq = dq" + idq® in Gp, which can be found from (A3) as
the following linear system:

Ry1dgy + Ryadgy — Illdq;. — I2dq} =0,

Ry2dq] + Raadq; — Ilquzi — Ip2dgy =0,

I1dg] + Ir2dq} + Ri1dq; + Ri2dgh = —dvy,

I3dq} + I52dgs + Ri2dgt + Razdgh = —dva,  (A4)
where R;; and I;; are evaluated on the real saddle point
do- We will be interested in solving (A4) for dq} and dg}

since they are the quantities appearing in (A2). When
this is done, we obtain

8qi 1 I12C IzzD
= Ry + 2% )
8’01 Do ( 22+ AR + AR
8qi _ 1 Il]_C IlzD
avz—_o(R12+ Ar AR )
8q£ _ 1 I]_gA I22B
dvy Do (R12 + AR + Agr )’
6q§ 1 I]_lA IlzB
=—— R s A5
6112 Do ( 11+ AR + AR ( )
where
A= Rg3I11 — Ry2142,
B = Ry1112 — Ri214;4,
C = Ra2115 — Ry2153,
D = Ry1132 — Ryo1h2, (A6)
and
Do = AL(A§+A§+A2+2BC+D2), (AT)
R

with Ag given in (Al) and A; defined in the same way.

We now can evaluate Aj; in (A2) and then Ay =
AT, A%, — (A7,)?, from which we can find the behavior
of A7 (%) around vp. It turns out that A is simply given
by 51;, where Dy is given in (A7). Now, from (A6) it is
easy to show that AD — BC = AgAj;.When this result
is used in (A7), we obtain finally that

- (AR - A[)Z + (A+D)2'

The quantity in the denominator is always positive and
therefore A, and Ag have the same sign. Moreover, it
is not difficult to show that for positive Ar (and A)),
R;;\j; will also be positive.

Therefore we have shown that the nature of any crit-
ical point gp of Re[f(q)] — which are also real saddle
points of f(§) — is brought into A"(%): not only will the
corresponding vy be a critical point, but a critical point
of the same kind. Also, it is true that if A"(¥) has any
critical point, the corresponding saddle point must be
real and therefore it must be a critical point of Re[f()]-
Nevertheless, whether the real saddle point is the one
contributing at the corresponding velocity can only be
answered through the analysis of all the saddle points in
the complex plane.

Ax

(A8)
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FIG. 1. Turbulent spot in water seen through a wall on
which a boundary layer has formed. The flow is from left
to right and the visualization by suspended aluminum flakes

(from [5]).



